

Study and Judgement on the Technological Dilemma and Trend of Three-Layer Liquid Electrolysis of Refined Aluminium

Peng Su¹ and Luoxi Liu²

1. Chief Engineer

2. Assistant Engineer

Zhengzhou Nonferrous Metals Research Institute of Chalco (ZRI) - High Purity Aluminium Research Institute, Zhengzhou, China

Corresponding author: peng_su@chinalco.com.cn

<https://doi.org/10.71659/icsoba2025-al024>

Abstract

DOWNLOAD
FULL PAPER

Three-layer liquid electrolysis, a century-old high purity aluminium production technology, still retains a certain proportion in countries such as Norway, Japan, China and Russia. However, under the immense pressure of emission reduction and energy consumption cost competition, caused mainly by recent-year excess refined aluminium production capacity and trade barriers between countries, it seems to have become an industry consensus that this increasingly niched process will be completely replaced by other purification processes – the segregation method, which has significant advantages in energy saving, environmental protection and broad-spectrum product applicability. Based on a comprehensive comparison and analysis of the strengths and weaknesses between these two, this article proposes feasible paths for breakthroughs and enhancements of industrial competitiveness of the three-layer liquid electrolysis process from the perspectives of process improvement, product upgrading, advantageous industrial chain combinations, and technological innovation.

Keywords: High purity aluminium, Refined aluminium, Three-layer liquid electrolysis, Segregation method.

1. Introduction: Definition, Production Capacity, and Applications of Refined Aluminium

In China, refined aluminium is customarily classified under the category of high purity aluminium. According to the Chinese Nonferrous Metals Industry Standard [1], aluminium with a purity ranging from 99.90 % to 99.996 % (corresponding to grades 3N0 to 4N6) is designated as refined aluminium. This classification aligns respectively with the definitions of high purity and ultrahigh purity aluminium in the American standards – Grade 1 and Grade 2 aluminium in the Japanese standards, and high purity aluminium under the Russian standards [2].

The global annual production capacity of refined aluminium has currently reached approximately 330 000 tonnes, excluding 3N aluminium products directly manufactured from conventional aluminium electrolysis cells. Major production regions include China, Japan, North America, Norway and Russia. After decades of technology introduction, assimilation, and independent innovation, China's refined aluminium industry has achieved significant growth, with an annual production capacity rising from less than 10 000 t at the beginning of this century [3] to nearly 201 500 t presently (see Table 1).

Approximately 80 % of the refined aluminium is used to produce aluminium foil for electrolytic capacitors. About 10 % is utilized in the manufacture of new energy battery electrodes, hydrogen energy storage and transportation tanks, high-performance conductive wire, cryogenic electromagnetic components, magnetic levitation materials, advanced packaging and coating

materials, as well as special aluminium alloys for aerospace and military applications [4]. The remaining 10 % is used for further purification into high and ultrahigh purity aluminium.

Table 1. Changes in China's refined aluminium production capacity over the past 20 years (excluding 3N aluminium produced directly from conventional electrolytic cells).

Purification process	Company	Completed production capacity (kt/y)	Capacity under construction (kt/y)	Potline current (kA)	Year of commissioning	Operational status
Three-Layer Liquid Electrolysis	Guizhou Aluminium Plant	5.5		60	2003	Closed in 2005
	Xinjiang Joinworld Co., Ltd.	5		65	2003	Closed in 2008
		12		80	2005	Closed in 2022
		15		100	2023	Exists
	Shanxi Guan Aluminium Group Co., Ltd.	12		70	2008	Closed in 2009
	Inner Mongolia XinChangjiang Mining Investment Co., Ltd.	10		60	2011	Closed in 2021
	Inner Mongolia Huomei Hongjun Aluminium & Electricity Co., Ltd.	12		80	2008	Closed in 2014
	Yidu Dongyangguang Industrial Development Co., Ltd.	5		60	2003	Closed in 2017
	Qinghai Qiaotou Aluminium and Electricity Co., Ltd.	20		70	2010	Closed in 2015
	Henan Shenhua Group Co., Ltd.	10		80	2005	Closed in 2016
	Baotou Aluminium Co., Ltd.	3.5	3.5	105	2025	Exists
Segregation method	Baotou Aluminium Co., Ltd	60		--	2007–2022	Exists
	Xinjiang Joinworld Co., Ltd	40		--	2008–2013	Exists
	Tianshan Aluminium Group Co., Ltd.	40	60	--	2023	Exists
	Guangxi Zhengrun New Material Technology Co., Ltd.	5		--	2016	Exists
	Guangxi Laibin Guangtou Yinhai Aluminium Co., Ltd.	10		--	2024	Exists
	Guangyuan Huabo Precision Aluminium Technology Co., Ltd.	20		--	2024	Exists
	Nanshan Aluminium Co., Ltd.	8		--	2024	Exists
	Inner Mongolia Chuangyin New Materials Co., Ltd.	--	50	--	Put into operation by 2026	Exists
	Jili BaiMine Group Co., Ltd.	10		--	2023	Exists
	Tongchuan Aluminium-based New Material Co., Ltd.	--	30	--	Put into operation by 2026	Exists

2. The Industrial Predicament Faced by the Three-Layer Liquid Electrolytic Refined Aluminium Production Process

Three types of processes can be employed to produce refined aluminium of different grade: First, conventional electrolytic aluminium plants, utilizing high-grade alumina, anodes, and fluoride

Feasible recycling routes include removing impurity elements to produce reusable aluminium-copper anode alloys or utilizing the impurity elements to prepare high-value aluminium alloys. The spent electrolyte contains a high concentration of fluorides, chlorides, and other compounds, which increase the cost of hazardous waste treatment. However, how to achieve efficient purification or high-value utilization of the spent electrolyte-turning waste has not yet attracted sufficient attention from researchers.

6. Conclusion

The three-layer liquid electrolysis process for refined aluminium faces an industrial dilemma due to its high energy consumption, high emissions, and limitations in product grade, resulting in it being increasingly displaced by segregation processes. This paper, through a comparative analysis of the advantages and disadvantages of two aluminium refining technologies, proposes approaches such as:

- 1) Developing high-conductivity, anti-aging, and environmentally friendly electrolyte systems;
- 2) Achieving high levels of automation and intelligence in the electrolysis process;
- 3) Developing new corrosion-resistant cell lining materials to extend cell life and seeking advantageous industrial chain combinations.

These strategies aim to significantly reduce energy costs, minimize pollution emissions, and improve product grade and competitiveness. Additionally, the feasibility of upgrading three-layer liquid electrolysis technology is discussed by exploring the development of new “small-scale” variant three-layer liquid electrolysis cells and new applications such as the preparation of high purity alloys from waste anode alloys and spent electrolyte regenerating treatment.

7. References

1. Ministry of Industry and Information Technology of the People's Republic of China, *Nonferrous Metals Industry Standard: YS/T 665-2018, Refined Aluminium Ingots for Remelting*, 1–2.
2. Biao Zeng et al., A systematic review of the production of high purity aluminium: Applications, preparation, and mechanisms, *Journal of Materials Research and Technology*, 34(2025), 987–1009, <https://doi.org/10.1016/j.jmrt.2024.12.085>
3. Yong Li, Current status and development trend of three-layer liquid aluminium electrorefining technology in China, *Light Metals*, 11(2001), 33–39. (Chinese)
4. Mengping Duan et al., Research progress on high purity aluminium preparation technology, *Mining & Metallurgy*, 30(2021), 38–39. (Chinese)
5. Stephen J. Lindsay, Very high purity aluminium: An historical perspective, *JOM* 66(2) (2014), 217-222, <https://doi.org/10.1007/s11837-013-0843-5>
6. Danilo C. Curtolo et al., Alternative fractional crystallization-based methods to produce high purity aluminium, *Journal of Materials Research and Technology*, 12(2021), 796-806, <https://doi.org/10.1016/j.jmrt.2021.03.025>
7. Celik et al., Process and apparatus for producing high purity aluminium, *European Patent EP0375308A1*, Jun. 27, 1990.
8. Toyoda et al., Method for producing aluminium material for use as electronic material” European Patent EP0459303A1, Dec. 4, 1991.
9. Ministry of Ecology and Environment of the People's Republic of China, Guiding opinions on strengthening source control of ecological environment for high energy-consuming and high-emission construction projects (Huan Huanping [2021] No. 45), *Gazette of the State Council of the People's Republic of China*, 2021(23): 48–50.
10. Xinjiang Joinworld Co., Ltd., 2023 Annual Report, 31–32.

11. K. Robert, Production of extreme purity aluminium, *U.S. Patent* US4273627A, Jun. 16, 1981.
12. Eiji Hashimoto et al., Purification of ultrahigh purity aluminium, *Journal de Physique IV France*, 1995, Vol. 5, No. C7, C7-153-C7-157, <https://doi.org/10.1051/jp4:1995715>
13. Jianwen Ning et al., Current status and development trend of high purity aluminium production in China, *Light Metals* 2012, 3–6. (Chinese)
14. Mitsuhiro Kondo et al., The production of high purity aluminium in Japan, *Journal of Materials Research and Technology*, Vol. 42, No. 11, 1990, 36-37, <https://doi.org/10.1007/bf03220434>
15. Helmut Vogt, On the mechanism of the anode effect in aluminium electrolysis, *Metallurgical and Materials TransactionsB*, 31(2000), 1225-1230, <https://doi.org/10.1007/s11663-000-0009-z>
16. Jianwen Ning, Theoretical discussion on three-layer liquid aluminium electrorefining production process, *Aluminium-Magnesium Communications*, Vol. 1, (2005), 29–31. (Chinese)
17. Jinlong Hou and Hongwu Hu, Application research on new energy-saving cathode structure technology for 500 kA aluminium electrolysis cell, *Nonferrous Metals Equipment* 4(2018), 19–22
18. Yanfang Wang et al., Development of new energy-saving technology for aluminium electrolysis cells with steady current and insulation, and its application in a 400 kA electrolysis series, *Nonferrous Metals (Extractive Metallurgy Section)*, 7(2020), 46–52. (Chinese)
19. Junqing Wang et al., New energy-saving technology for aluminium electrolysis cells with steady current and insulation and its industrial application results, *World Nonferrous Metals*, 1(2019), 23–24. (Chinese)
20. Min Wang et al., Testing and analysis of physical fields in a 420 kA aluminium electrolysis cell, *Metal Materials and Metallurgical Engineering*, Vol. 43, No. 5,(2015), 48–52. (Chinese)
21. Rainer Sudhoelter, Aluminium refining, *German Patent* DE4329732C, August 4, 1994.
22. Y. P. Sun et al., Roasting starting method of three-layer liquid refined aluminium electrolysis cell, *Chinese Patent* CN117144418A, Dec. 1, 2023.
23. Bin Cao et al., A high purity aluminium continuous production method of large-current ‘three-layer liquid electrolysis’ series, *Chinese Patent* CN118516711A, Aug. 20, 2024.
24. Guodong La et al., Method and equipment for electrolytically refining aluminium through three-layer liquid, *Chinese Patent* CN116815249A, Sept. 29, 2023.
25. Huimin Lu, A three-layer liquid refined aluminium process and a special cathode for refined aluminium electrolysis cell, *Chinese Patent* CN1664172A, Sept. 7, 2005.
26. Huimin Lu, A three-layer liquid refining method for high purity aluminium, *Chinese Patent* CN1807695A, July 26, 2006.
27. Lei Zhao et al., A new type of cathode for three-layer liquid refined aluminium production, *Chinese Patent* CN204417616U, June 24, 2015.
28. Minoru Isshiki et al., Preparation of high purity metals for advanced devices, *Thin Solid Films*, Vol. 519, No. 24, 2011, 8451–8455, <https://doi.org/10.1016/j.tsf.2011.05.038>.
29. Ministry of Industry and Information Technology of the People's Republic of China, Cleanroom Design Code, *Nonferrous Metals Industry Standard* GB50073-2013, 2013, 7.
30. Qiang Wang et al., Control of the alloying element distribution in Al-Alloys by high magnetic fields, *Materials Science Forum*, Vols. 539-543, 2007, 457-462, <https://doi.org/10.4028/www.scientific.net/msf.539-543.457>.
31. Lei Zhang et al., Alternating Magnetic Field Separation of Intermetallic Compounds Fe and Si in Aluminium Melt, *Light Metals*, 1(2005), 53-56. (Chinese)

32. Qin Shuai Wei et al., Zinc removing from aluminium alloy by vacuum distillation, *Advanced Materials Research* 402, 2012, 303-306, <https://doi.org/10.4028/www.scientific.net/amr.402.303>.
33. Mingming Zhang et al., New electrolytes for aluminium production: Ionic liquids, *Journal of Materials Research and Technology*, Vol.55, No.11, 2003, 54-57, <https://doi.org/10.1007/s11837-003-0211-y>.
34. Yongdong He and Zhicheng Sun, A process for preparing high purity conjoined multistage electrolytic apparatus and method of use, *Chinese Patent* CN106894052B, October 16, 2018.
35. Huimin Lu and XiaoXi Lu, High purity aluminium electrolysis cell, *Chinese Patent* CN216947240U, July 12, 2022.
36. Jia Ming et al., Method and electrolysis cell for electrolytic refining to prepare high purity aluminium, *Chinese Patent* CN105177631B, Oct. 13, 2017.
37. Zhonglin Zhang and Zhuxian Qiu, Study on the properties of electrolytes for refined aluminium (pure fluoride system), *Light Metals* 1991, 33-37. (Chinese)
38. David H. DeYoung et al., Systems and methods for purifying aluminium, International Patent WO 2016/130823, Aug.18.2016.
39. Evgenij Valer'evich Zhelezov et al., Device for Electrochemical Refining of Aluminium in Electrolyzers (Variants), *Russian Patent* RU2809349C1, Feb. 20, 2023.
40. Sheng Yang et al., Production method of high purity aluminium scandium alloy, *Chinese Patent* CN1514042A, Jul. 21, 2004.
41. Aleksandr Yu Bajmakov et al., Process of electrolytic refining of aluminium by three-layer method, *Russian Patent* RU2092591C1, Oct. 10, 1997.